The book presents numerous techniques, algorithms, and models. It describes neural networks, evolutionary optimization techniques, rough sets, support vector machines, tabu search, fuzzy logic, a Bayesian probabilistic framework, a statistical parts-based appearance model, a reinforcement learning-based multistage image segmentation algorithm, a machine learning approach, Monte Carlo simulations, and intelligent, deformable models. The contributors discuss how these techniques are used to classify wound images, extract the boundaries of skin lesions, analyze prostate cancer, handle the inherent uncertainties in mammographic images, and encapsulate the natural intersubject anatomical variance in medical images. They also examine prostate segmentation in transrectal ultrasound images, automatic segmentation and diagnosis of bone scintigraphy, 3-D medical image segmentation, and the reconstruction of SPECT and PET tomographic images.